Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2314959121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38573965

RESUMEN

The self-assembly of spheres into geometric structures, under various theoretical conditions, offers valuable insights into complex self-assembly processes in soft systems. Previous studies have utilized pair potentials between spheres to assemble maximum contact clusters in simulations and experiments. The morphometric approach to solvation free energy that we utilize here goes beyond pair potentials; it is a geometry-based theory that incorporates a weighted combination of geometric measures over the solvent accessible surface for solute configurations in a solvent. In this paper, we demonstrate that employing the morphometric model of solvation free energy in simulating the self-assembly of sphere clusters results, under most conditions, in the previously observed maximum contact clusters. Under other conditions, it unveils an assortment of extraordinary sphere configurations, such as double helices and rhombohedra. These exotic structures arise specifically under conditions where the interactions take multibody potentials into account. This investigation establishes a foundation for comprehending the diverse range of geometric forms in self-assembled structures, emphasizing the significance of the morphometric approach in this context.

2.
Adv Mater ; 35(13): e2206110, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36461812

RESUMEN

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.


Asunto(s)
Fenómenos Mecánicos , Membrana Celular , Morfogénesis
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983840

RESUMEN

Conventional embeddings of the edge-graphs of Platonic polyhedra, {f, z}, where f, z denote the number of edges in each face and the edge-valence at each vertex, respectively, are untangled in that they can be placed on a sphere ([Formula: see text]) such that distinct edges do not intersect, analogous to unknotted loops, which allow crossing-free drawings of [Formula: see text] on the sphere. The most symmetric (flag-transitive) realizations of those polyhedral graphs are those of the classical Platonic polyhedra, whose symmetries are *2fz, according to Conway's two-dimensional (2D) orbifold notation (equivalent to Schönflies symbols Ih , Oh , and Td ). Tangled Platonic {f, z} polyhedra-which cannot lie on the sphere without edge-crossings-are constructed as windings of helices with three, five, seven,… strands on multigenus surfaces formed by tubifying the edges of conventional Platonic polyhedra, have (chiral) symmetries 2fz (I, O, and T), whose vertices, edges, and faces are symmetrically identical, realized with two flags. The analysis extends to the "θz " polyhedra, [Formula: see text] The vertices of these symmetric tangled polyhedra overlap with those of the Platonic polyhedra; however, their helicity requires curvilinear (or kinked) edges in all but one case. We show that these 2fz polyhedral tangles are maximally symmetric; more symmetric embeddings are necessarily untangled. On one hand, their topologies are very constrained: They are either self-entangled graphs (analogous to knots) or mutually catenated entangled compound polyhedra (analogous to links). On the other hand, an endless variety of entanglements can be realized for each topology. Simpler examples resemble patterns observed in synthetic organometallic materials and clathrin coats in vivo.

4.
Plant Physiol ; 188(1): 81-96, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662407

RESUMEN

Bicontinuous membranes in cell organelles epitomize nature's ability to create complex functional nanostructures. Like their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologically complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous structures from TEM sections through interactive identification by comparison to mathematical "nodal surface" models. The prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloroplast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools enabling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etioplasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive structure-function relationship.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/ultraestructura , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/ultraestructura , Plastidios/fisiología , Plastidios/ultraestructura , Avena/crecimiento & desarrollo , Avena/ultraestructura , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Modelos Teóricos , Pisum sativum/crecimiento & desarrollo , Pisum sativum/ultraestructura , Phaseolus/crecimiento & desarrollo , Phaseolus/ultraestructura , Programas Informáticos , Zea mays/crecimiento & desarrollo , Zea mays/ultraestructura
5.
Sci Adv ; 7(50): eabj6737, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890240

RESUMEN

We present a three-periodic, chiral, tensegrity structure and demonstrate that it is auxetic. Our tensegrity structure is constructed using the chiral symmetry Π+ cylinder packing, transforming cylinders to elastic elements and cylinder contacts to incompressible rods. The resulting structure displays local reentrant geometry at its vertices and is shown to be auxetic when modeled as an equilibrium configuration of spatial constraints subject to a quasi-static deformation. When the structure is subsequently modeled as a lattice material with elastic elements, the auxetic behavior is again confirmed through finite element modeling. The cubic symmetry of the original structure means that the auxetic behavior is observed in both perpendicular directions and is close to isotropic in magnitude. This structure could be the simplest three-dimensional analog to the two-dimensional reentrant honeycomb. This, alongside the chirality of the structure, makes it an interesting design target for multifunctional materials.

6.
J Phys Condens Matter ; 29(12): 124004, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28067638

RESUMEN

We explore an alternate way of looking at the rheological response of a yield stress fluid: using discrete geometry to probe the heterogeneous distribution of stress in soap froth. We present quasi-static, uniaxial, isochoric compression and extension of three-dimensional random monodisperse soap froth in periodic boundary conditions and examine the stress and geometry that result. The stress and shape anisotropy of individual cells is quantified by Q, a scalar measure derived from the interface tensor that gauges each cell's contribution to the global stress. Cumulatively, the spatial distribution of highly deformed cells allows us to examine how stress is internally distributed. The topology of highly deformed cells, how they arrange relative to one another in space, gives insight into the heterogeneous distribution of stress.

7.
Acta Crystallogr A Found Adv ; 71(Pt 6): 599-611, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26522409

RESUMEN

Entanglements of two-dimensional honeycomb nets are constructed from free tilings of the hyperbolic plane (H2) on triply periodic minimal surfaces. The 2-periodic nets that comprise the structures are guaranteed by considering regular, rare free tilings in H2. This paper catalogues an array of entanglements that are both beautiful and challenging for current classification techniques, including examples that are realized in metal-organic materials. The compactification of these structures to the genus-3 torus is considered as a preliminary method for generating entanglements of finite θ-graphs, potentially useful for gaining insight into the entanglement of the periodic structure. This work builds on previous structural enumerations given in Periodic entanglement Parts I and II [Evans et al. (2013). Acta Cryst. A69, 241-261; Evans et al. (2013). Acta Cryst. A69, 262-275].

8.
Phys Rev Lett ; 112(3): 038102, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24484167

RESUMEN

The stratum corneum, the outer layer of mammalian skin, provides a remarkable barrier to the external environment, yet it has highly variable permeability properties where it actively mediates between inside and out. On prolonged exposure to water, swelling of the corneocytes (skin cells composed of keratin intermediate filaments) is the key process by which the stratum corneum controls permeability and mechanics. As for many biological systems with intricate function, the mesoscale geometry is optimized to provide functionality from basic physical principles. Here we show that a key mechanism of corneocyte swelling is the interplay of mesoscale geometry and thermodynamics: given helical tubes with woven geometry equivalent to the keratin intermediate filament arrangement, the balance of solvation free energy and elasticity induces swelling of the system, importantly with complete reversibility. Our result remarkably replicates macroscopic experimental data of native through to fully hydrated corneocytes. This finding not only highlights the importance of patterns and morphology in nature but also gives valuable insight into the functionality of skin.


Asunto(s)
Células Epidérmicas , Modelos Biológicos , Fenómenos Fisiológicos de la Piel , Forma de la Célula , Epidermis/metabolismo , Termodinámica
9.
Proc Natl Acad Sci U S A ; 111(4): 1271-6, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474747

RESUMEN

Numerical simulations reveal a family of hierarchical and chiral multicontinuous network structures self-assembled from a melt blend of Y-shaped ABC and ABD three-miktoarm star terpolymers, constrained to have equal-sized A/B and C/D chains, respectively. The C and D majority domains within these patterns form a pair of chiral enantiomeric gyroid labyrinths (srs nets) over a broad range of compositions. The minority A and B components together define a hyperbolic film whose midsurface follows the gyroid minimal surface. A second level of assembly is found within the film, with the minority components also forming labyrinthine domains whose geometry and topology changes systematically as a function of composition. These smaller labyrinths are well described by a family of patterns that tile the hyperbolic plane by regular degree-three trees mapped onto the gyroid. The labyrinths within the gyroid film are densely packed and contain either graphitic hcb nets (chicken wire) or srs nets, forming convoluted intergrowths of multiple nets. Furthermore, each net is ideally a single chiral enantiomer, induced by the gyroid architecture. However, the numerical simulations result in defect-ridden achiral patterns, containing domains of either hand, due to the achiral terpolymeric starting molecules. These mesostructures are among the most topologically complex morphologies identified to date and represent an example of hierarchical ordering within a hyperbolic pattern, a unique mode of soft-matter self-assembly.

10.
Phys Rev Lett ; 111(13): 138301, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24116819

RESUMEN

Quasistatic simple shearing flow of random monodisperse soap froth is investigated by analyzing surface evolver simulations of spatially periodic foams. Elastic-plastic behavior is caused by irreversible topological rearrangements (T1s) that occur when Plateau's laws are violated; the first T1 determines the elastic limit and frequent T1 avalanches sustain the yield-stress plateau at large strains. The stress and shape anisotropy of individual cells is quantified by Q, a scalar derived from an interface tensor that gauges the cell's contribution to the global stress. During each T1 avalanche, the connected set of cells with decreasing Q, called the stress release domain, is networklike and nonlocal. Geometrically, the networklike nature of the stress release domains is corroborated through morphological analysis using the Euler characteristic. The stress release domain is distinctly different from the set of cells that change topology during a T1 avalanche. Our results highlight the connection between the unique rheological behavior of foams and the complex large-scale cooperative rearrangements of foam cells that accompany distinctly local topological transitions.


Asunto(s)
Células Espumosas/química , Modelos Químicos , Sustancias Viscoelásticas/química , Elasticidad , Modelos Moleculares , Plásticos/química , Resistencia al Corte
11.
Faraday Discuss ; 161: 215-47; discussion 273-303, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23805745

RESUMEN

Inverse bicontinuous cubic phases with two aqueous network domains separated by a smooth bilayer are firmly established as equilibrium phases in lipid/water systems. The purpose of this article is to highlight the generalisations of these bicontinuous geometries to polycontinuous geometries, which could be realised as lipid mesophases with three or more network-like aqueous domains separated by a branched bilayer. An analysis of structural homogeneity in terms of bilayer width variations reveals that ordered polycontinuous geometries are likely candidates for lipid mesophase structures, with similar chain packing characteristics to the inverse micellar phases (that once were believed not to exist due to high packing frustration). The average molecular shape required by global geometry to form these multi-network phases is quantified by the surfactant shape parameter, v/(al); we find that it adopts values close to those of the known lipid phases. We specifically analyse the 3etc(187 193) structure of hexagonal symmetry P6(3) /mcm with three aqueous domains, the 3dia(24 220) structure of cubic symmetry I43d composed of three distorted diamond networks, the cubic chiral 4srs(24 208) with cubic symmetry P4232 and the achiral 4srs(5 133) structure of symmetry P42/nbc, each consisting of four intergrown undistorted copies of the srs net (the same net as in the QII(G) gyroid phase). Structural homogeneity is analysed by a medial surface approach assuming that the headgroup interfaces are constant mean curvature surfaces. To facilitate future experimental identification, we provide simulated SAXS scattering patterns that, for the 4srs(24 208) and 3dia(24 220) structures, bear remarkable similarity to those of bicontinuous QII(G)-gyroid and QII(D)-diamond phases, with comparable lattice parameters and only a single peak that cannot be indexed to the well-established structures. While polycontinuous lipid phases have, to date, not been reported, the likelihood of their formation is further indicated by the reported observation of a solid tricontinuous mesoporous silicate structure, termed IBN-9, which formed in the presence of surfactants [Han et al., Nat. Chem., 2009, 1, 123].

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061401, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23005090

RESUMEN

The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.


Asunto(s)
Coloides/química , Cristalización/métodos , Gases/química , Modelos Químicos , Modelos Moleculares , Reología/métodos , Simulación por Computador , Módulo de Elasticidad , Movimiento (Física)
13.
Interface Focus ; 2(5): 555-66, 2012 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-24098839

RESUMEN

We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S (2)), Euclidean (E (2)) and hyperbolic (H (2)) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions.

14.
J R Soc Interface ; 8(62): 1274-80, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21398404

RESUMEN

A novel technique to generate three-dimensional Euclidean weavings, composed of close-packed, periodic arrays of one-dimensional fibres, is described. Some of these weavings are shown to dilate by simple shape changes of the constituent fibres (such as fibre straightening). The free volume within a chiral cubic example of a dilatant weaving, the ideal conformation of the G(129) weaving related to the Σ(+) rod packing, expands more than fivefold on filament straightening. This remarkable three-dimensional weaving, therefore, allows an unprecedented variation of packing density without loss of structural rigidity and is an attractive design target for materials. We propose that the G(129) weaving (ideal Σ(+) weaving) is formed by keratin fibres in the outermost layer of mammalian skin, probably templated by a folded membrane.


Asunto(s)
Células Epidérmicas , Queratinocitos/citología , Queratinas/fisiología , Modelos Biológicos , Epidermis/ultraestructura , Humanos , Queratinocitos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...